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Abstract—The ability to precisely identify the threats that
unknown binaries propose to an environment is an ongoing issue
within cyber security. Malware analysis is typically performed
through two general methods, static analysis and dynamic anal-
ysis. Through static analysis control flow graphs can be generated
to represent the flow of a program between different code
blocks. Data can be further generated to represent individual
instructions as VEX commands. By organizing this data into
StellarGraph objects, we can use GraphSAGE models to generate
low-dimensional embeddings for familial attribution with greater
resistance to unseen samples causing overfitting.

I. INTRODUCTION

As current intrusion detection systems (IDSs) and intrusion

prevention systems (IPSs) rely on static, signature-based so-

lutions, the most minute changes to code can cause the same

signatures to be targeted or misclassify malicious binaries as

otherwise benign. Malware analysis is typically performed

through two general methods, static analysis and dynamic

analysis. Static analysis is conducted without running the

binary and the same methods can be performed against source

code as well. Whereas dynamic analysis requires running the

binary and then inspecting different elements about the binary

itself, it’s memory or the environment it is running [1].

Where this research diverges from traditional methods is the

type of static features extracted, their represented format, and

the algorithms used to assess familial inferences. In doing so

we hope to reduce the number of false positives produced by

misfit models classifying unknown binaries; in short, reducing

the number of networks or environments compromised by

emerging malware or advanced persistent threats (APTs).

II. INDUCTIVE REPRESENTATION LEARNING ON LARGE

GRAPHS

Executables can have thousands of functions or code-blocks

represented within a control flow graph. Because of this, it

is important to determine whether there are any valid ways

to efficiently generate embeddings and inferences from the

nodes within those graphs. In [2], the authors presented Graph

Sample and Aggregate (GraphSAGE) from the StellarGraph li-

brary [3], an inductive framework that leverages node attribute

information to generate embeddings via forward propagation

for previously undigested data.
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III. METAMORPHIC MALWARE DETECTION USING

CONTROL FLOW GRAPH MINING

There are different ways that executables can be represented,

but the three most common are: source code, disassembly,

and control flow graphs. For instance, with source code we

know exactly what the code originally looked like before the

executable was compiled. We can see the libraries that were

imported, the functions called from those libraries, as well as

the structure of any methods or data types.

We can disassemble an executable and use the raw assembly

or opcodes produced from that disassembler to count opcode

frequency, instruction count, or to even track references to

addresses within memory. Similarly, we can use that same

disassembly to create decompilations which are a form of

pseudo-source code meant to improve the understanding of

a program. Depending on the language an executable was

written in, decompilation will produce wildly different results.

For instance, the difference between the decompiler used by

dnSpy for .NET code versus the results produced by IDA with

Hex-Rays and any C or C++ programs [5]. In [4], the authors

discussed how to use the third representation type, control

flow graphs (CFG), to gather further data as features for our

datasets.

Control flow is indicated by instructions using an uncondi-

tional jump jmp, a conditional jump jcc, a function call call,

or a function return ret operator. Using this intuition, we can

build CFGs defined by the entrypoint address of a function to

where any of the previously indicated instructions are made.

This will produce CFGs consisting of multiple interconnected

blocks.

IV. PROPOSED SOLUTION

The phases for this proposal are as defined by Fig. 1. Under

the Data Generation Phase, malicious portable executable

(PE32) samples will be gathered from the shown sources:

VirusShare, HybridAnalysis, VirusTotal, and Microsoft Win-

dows images; popular online platforms for computer virus

checking. Samples are ingested with angr then, as described

under Section IV-B, their respective VEX features are ex-

tracted. Based on our experimental data, the exact distribution

for this sampling is 991 malicious and 991 benign samples.

During employment at the Idaho National Laboratory, access

to Annotated Translated Disassembled Code [8] was provided

to create embeddings for this ML analysis.
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Fig. 1: Four Main Phases of the Proposed Solution

A. Data Extraction

The CFG data will be extracted from the samples using

angr, a multi-architecture binary analysis toolkit, with the

ability to perform dynamic symbolic execution, and various

static analyses on binaries. For the purpose of this proposed

solution, we will use a static CFG (CFGFast) to generate a

CFG for each sample. The analytical data for these CFGs are

stored using the VEX IR, an architecture-neutral intermediate

representation, of each node or block within Neo4j [6].

B. Data Labeling

Through the use of angr, the VEX commands chosen to

identify code blocks within a given sample are the following:

TABLE I: Extracted angr Features

libname iex vecret ist storeg

funcaddr iex abihint ist wrtmp

iex binop ist dirty ico u1

iex ccall ist exit ico u8

iex const ist imark ico u16

iex get ist llsc ico u32

iex geti ist loadg ico u64

iex gsptr ist mbe ico f32

iex load ist cas ico f64

iex qop iex ite ico f64i

iex rdtmp ist noop ico v128

iex triop ist putist puti ico v256

iex unop ist store

These 38 features represent the different nodes features for

each block within Stellargraph. Brief descriptions of what each

feature represents can be found at [7].

C. Classification

The GraphSAGE framework from Stellargraph is currently

the preferred method for supervised learning and node clas-

sification of the CFGs and their node features generated by

angr. Using this framework will allow typical splits of 70%

training and 30% testing dataset. After several runs of training

the models with a mix of benign and malicious PE32 binaries,

the model will be used to predict the family and class of the

binaries. The output of the classification phase is a confusion

matrix and other details not limited to training/testing time.

D. Performance Metric Computation

The performance metric computation phase will calculate

the necessary performance metrics as indicated in Fig. 1. The

matrix will be used to calculate False Positive Rate (FPR),

Precision, Accuracy, Root Means Square Error (RMSE), F-

Measure, and AUC-ROC. Finally, a table of the performance

metrics will be created containing the values from the pro-

posed metrics.

V. CONCLUSION AND FUTURE WORK

In this paper, we discussed the limits of current detection

methods and potential for current machine learning models

to identify familial relations within malware samples. We

proposed a solution with control flow graph data gathered

using angr and generative convolutional networks to attribute

the malware samples. Future contributions aim to refine the

proposed implementation by increasing overall detection rate

and time to train through dimensionality reduction; a form of

exploratory data analysis not considered at the time of testing.
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